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Abstract—Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to
direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively
parallel distributed-memory machines. A new distributed spatial data structure, named parallel distance tree, is introduced to manage
the level sets of data and facilitate surface tracking over time, resulting in significantly reduced computation and communication costs
for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance
metrics from real-world applications. We demonstrate its efficiency and scalability on state-of-the-art supercomputers using both large-
scale volume data sets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces
for a petascale combustion simulation. Our work greatly extends the usability of distance fields for demanding applications.
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1 INTRODUCTION

OMPUTING distance fields is a fundamental requirement

for many algorithms of computer graphics and visualiza-
tion. Distance fields are also referred to as distance transforms
or distance maps. Their usage has been widely found in diverse
scientific and engineering fields, such as volume graphics,
computer vision, image processing, and computational geome-
try. Beyond their conventional applications, distance fields also
receive new attention in the era of big data. Researchers have
shown that distance fields can play a critical role in addressing
visualization of large and complex data. For example, it is
viable to effectively reduce visual clutter while accentuating
visual foci via prioritizing data objects according to their
distances to regions of interest [1]. Distance fields can also
serve for indexing and compression approaches to managing
and exploring data at extreme resolutions [2], [3], [4].

There has been extensive prior work in developing algo-
rithms for computing distance fields. We refer readers to the
references [5] and [6] for an overview of 2D and 3D distance
field construction and applications. However, most of this
research has not focused on the requirements imposed by
large-scale scientific applications:

First, there are few general distance field construction
algorithms that deal effectively with large data generated
from tera-to-petascale scientific simulations. It is imperative
to improve the scalability of algorithms to achieve high levels
of parallelism for large data processing.

o Hongfeng Yu is with the University of Nebraska-Lincoln.
E-mail: yu@cse.unl.edu

e J. Xie and K.-L. Ma are with the University of California-Davis.
E-mail:jrxie,klma @ucdavis.edu

e H. Kolla and J.H. Chen are with Sandia National Laboratories.
E-mail:hnkolla,jhchen @ sandia.gov

Second, extrapolating current technology trends towards the
exascale computing reveals the increasing disparity between
I/O speed and compute speed [7]. Due to the lagged 1/O speed,
scientists can only store a small fraction of the data during
their detailed modeling and simulation processes, thus possibly
missing highly intermittent transient phenomena. A promising
solution is to process the data in-situ on the same machines as
the simulation runs, which can minimize the I/O cost and lead
to exploration of data with full extent. This requires new in-situ
algorithms to scale as well as simulations when executed with
thousands to hundreds of thousands of CPU cores. However,
such a scale has not been considered in any existing distance
field construction algorithms that are almost exclusively done
as an offline post-processing step.

Third, many real-world data sets are large in size and
heterogeneous in type, structure, and semantics. As a result,
it is desired to design distance field representations in support
of varied data in a uniform and scalable way. Such representa-
tions can also facilitate a wide range of subsequent processing
operations while minimizing data storage and transformation
overhead. This requirement, however, has rarely been ad-
dressed in previous work.

It is non-trivial to design scalable solutions for computing
distance fields within massive and complex data. Although
researchers have exploited parallel and distributed computing
in distance field construction, the existing algorithms are
typically characterized with high memory access and intensive
communication overhead in a distributed environment. Addi-
tionally, data elements are at risk of being unevenly partitioned
and distributed over space. This produces difficulties in achiev-
ing a balanced workload among a large number of processors
using the existing algorithms.

In this paper, we present a highly scalable algorithm for
computing distance field of large-scale applications. We de-
sign a new spatial hierarchical data structure, named parallel
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distance tree, that allows us to efficiently capture, track, and
manage the essential information of data, and minimize the
communication and computation costs across processors to
compute the distance field. In addition, our method supports
multiple data types including polygonal objects, point clouds,
or volumetric data. It is also flexible with different distance
metrics, including Euclidean distance, City block distance, and
Chessboard distance. Thus, our method can be used in a wide
range of real-world large applications with minimal implemen-
tation efforts. We have conducted case studies using different
3D data sets, and shown that our achievement is generalizable
and beneficial to researchers from different areas.

We have also integrated our method with real-world large
simulations. This enables scientists to compute distance fields
in-situ and capture highly intermittent and detailed phenomena
that were hardly perceived in post-processing. Our method
does not depend on any particular architectures, and the
experiments have been conducted on state-of-the-art super-
computers. Our results have scaled up to 69,120 CPU cores of
parallel distance field constructions, and clearly demonstrated
the improvement over the previous state-of-the-art.

2 RELATED WORK

The research work relevant to our problem includes parallel
distance field construction, distance field representation, paral-
lel octrees, and in-situ processing. Little previous research has
been done to address all aspects of the problem in the context
of large scale scientific and engineering applications.

Parallel Distance Field Construction. Researchers have
developed a number of parallel algorithms to compute distance
fields. Most of them are designed for SIMD architectures [8],
[9], parallel random access machines [10], reconfigurable
systems [11], and GPUs [12], [13], [14], [15], [16]. Although
noticeable performance numbers have been reported, these
approaches cannot be optimally scaled with respect to the
size of data and the number of processing units due to the
inherent memory model of the architectures [17]. Distributed
memory MIMD machines are more general purpose and en-
able algorithms scale to large data. Bruno et al. [18] presented
a parallel implementation for the 2D Euclidean distance trans-
form (EDT). They provided the speed-up results with different
pixel numbers using 4 processors. Lee et al. [19] presented an
optimized algorithm for the 3D EDT; however, the speed-up
was only achieved for 3 processors. Torelli et al. [20] used data
compression to reduce communication cost, and demonstrated
the scalability up to 10 processors. Additionally, these research
efforts only examined 2D images or 3D volume data sets, and
represented distance fields in pixel or voxel grids. Thus, the
stability and applicability of these various approaches to large
data sets are limited given the scale of system and the size of
data that are considered in our study.

Distance Field Representation. Using spatial hierarchies
is a simple but effective way to represent distance fields.
Quadtree and octree based approaches are most relevant to our
work. Samet [21] used a quadtree representation to compute
the chessboard distance transform of 2D images. Strain [22]
presented a similar approach that uses quadtree to solve the

redistancing problem with the max-norm distance. Frisken
et al. [23] proposed the Adaptive Distance Fields method
that uses octree to subdivide space and sample a continuous
distance field. Bounding volume hierarchy (BVH) is another
commonly used hierarchical technique to organize geomet-
ric objects. Researchers have proposed different acceleration
methods for different geometric models [24], [25], [26]. Al-
though their applications are similar to ours, these methods are
mainly designed for collision detection and minimal distance
query, rather than distance field construction.

Parallel Octrees. Parallel octree structures have been used
in many applications. Zhou et al. [27] presented a data-parallel
octree method for surface reconstruction on a single GPU.
However, for scalable performance on distributed systems,
there is a need to establish and maintain the correlation of
octrees across a large number of processors. Parallel octrees
are also frequently used in scientific applications, such as N-
body simulations [28], [29] and earthquake modeling [30].
However, these applications do not require to organize objects
for parallel distance field calculation.

In-situ Processing. The increasing performance gap be-
tween compute and I/O capabilities has motivated recent
developments in in-situ data processing. Researchers have di-
rectly integrated operations, including visualization [30], [31],
and statistical compression and queries [32], into simulation
routines to operate on in-memory simulation data. In this work,
our solution can be as scalable as the simulations, and make
it feasible to construct distance fields in-situ.

3 BACKGROUND

A distance field is defined as the following: Suppose we have
a set I' consisting of elements in R3, where elements can
be polygonal objects, point clouds, or volumetric data. The
value at each point p of a distance field domain Q C R is the
distance from p to its nearest element of I':

dfr(p) = infdist(x—p), (1
xel

where the distance function dist is application specific, and
the commonly used ones include the Euclidean distance, the
city block distance, and the chessboard distance.

Figure 1 (a) shows an example of application requirement
from a large-scale combustion simulation. The bounding box
corresponds to the 3D simulation domain, and the blue surface
is an isosurface extracted from one time step of data. Using
this surface as I', a scientist wants to compute the distance
from any point inside the domain Q to the surface.

It is very challenging to achieve optimal parallel efficiency
to compute distance field with large and complex data in a dis-
tributed environment [18], [19]. This is first because distance
field construction is characterized with high memory access.
As shown in Equation 1, in the worst case an exhaustive search
of elements may be required to find the nearest element of
a point. As such, in a distributed environment where each
processor may hold a portion of the elements, this can incur
intensive message exchanges among processors. In addition,
data elements can be unevenly partitioned and distributed over
space, and thus it is difficult to achieve balanced workload
among processors.
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Fig. 1. (a) shows a 3D rendering of an isosurface ex-
tracted from a combustion data set at a time step ¢,. We
may only need to search a small portion of the surface
to compute the distance at any point. (b) and (c) show
the slices of the surface evolved at two consecutive time
steps, 1; and ¢, 1. The difference between the two surfaces
is around 0.1% of the surface area. Only a small fraction
of distance field may need to be updated accordingly.

3.1 Spatial and Temporal Coherence

To address these issues, we are inspired by the spatial and
temporal coherence inherent in the data of modelings and
simulations. Given the example shown in Figure 1, we have
the following observations. First, by leveraging the spatial
coherence (Figure 1 (a)), we may only need to search a set
of nearby elements to compute the distance at any point. In a
distributed environment, this implies that it is possible for one
processor (PE) ! to only communicate with a fewer number
of vicinal processors, thus reducing communication costs.
Furthermore, Equation 1 shows that the overall computation
cost is proportional to the number of elements, and thus we
may achieve more balanced workload by evenly partitioning
and distributing the workload with respect to the elements and
the distance field domain. Second, by leveraging the temporal
coherence (Figure 1 (b) and (c)), we may only need to update
a small fraction of distance field with respect to the changes
of elements, which can further reduce the communication and
computation costs over time.

3.2 Octree-based Distance Field Construction

At first glance, it may appear straight-forward to first build
a spatial hierarchy, such as an octree, to index the set T’
of elements by subdividing the distance field domain Q
adaptively, and then, for a point p, we can query the tree
to find its nearest point among the elements. However, the
elements within the same octree node as p may not contain
the nearest point to p. Thus, we need to continue to go through
the nearby octree nodes that can be at different tree levels, and
this operation will require additional overhead.

To solve this problem, Strain [22] modified the way to build
an octree to facilitate the nearest point query. For each octree
node C with the center ¢ and the edge length 27, Strain defined

1. A processor refers to a single-core processor or a core in a
multiple-core processor.

the concentric triple (or shortened as triple) T of C as:
T ={x € R : dist(x—¢) < 3r}. 2)

Based on this definition, an octree is built from a root node
that encloses I'. Each tree node has an element list, and initially
the root’s element list contains all elements of I". A tree node
is recursively split if its triple intersects I'. For each new child
node, we check every element in the parent’s element list, and
add it to the child’s element list if the element intersects the
child’s triple. We continue this recursive splitting until a tree
node has an empty element list or the tree depth reaches a
maximum criterion.

After building such an octree, for a point p, we can locate
the leaf node C containing p, and efficiently compute the
distance of p to I' through three steps:

1) Find the minimal distance m; from p to the elements of
I" in the element list of C.
2) If the element list of C is empty or m; does not satisfy

{xeR?:dist(p—x) <my} CT, 3)

where T is the triple of C, it means that there are pos-
sibly some elements outside 7 but having the minimal
distance to p. Then we find the minimal distance m;
from p to the elements of I" in the element list of the
parent node C’ of C.

3) If my does not satisfy

{xeR®: dist(p—x) <my} C T, 4)

where T is the triple of C’, then we find the minimal
distance m3 from p to the elements of I" in the element
list of the grandparent node C” of C.

The correctness of this procedure has been proved in [21],
[22]. This procedure can provide the exact distance value at
any p. Alternatively, we can also first compute the distances
at the octree vertices and then obtain the distance at p
using interpolation. Such an octree equipped with the vertex
distances and the element lists is called a distance tree that
can provide both exact and interpolated distance values [22].

4 PARALLEL DISTANCE TREE

Our intuition is to extend the octree-based method to index
data distribution across processors and exploit the spatial and
temporal coherence. A straight-forward solution is to let each
processor first compute a global distance tree, and then use the
tree to query the vicinal processors to construct the distance
field collaboratively. However, this requires each processor to
collect the information of global data distribution before global
tree construction. Such a collective operation often incurs a
significant amount of communication. In addition, a full-grown
global distance tree is typically too large to be handled by a
single processor. Hence, it is non-trivial to efficiently construct
and maintain distance tree in parallel, and use it to derive
workload assignment and communication schedule.

We introduce a novel distributed spatial data structure,
named parallel distance tree, to index the set I of elements
and the distance field domain Q for parallel distance field
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Fig. 2. (a) shows a set I of elements in the domain Q. (b)
shows that the elements are partitioned and distributed
among 5 processors in a block fashion. The assignments
of I' among the processors are represented in different
colors. Each processor fills a bitmap according to its
local element block distribution. After a collective reduc-
tion operated on the bitmap, each processor obtains the
information of the global distribution of the element blocks
and the empty blocks, as shown in (c).

construction. Based on our assumptions (Section 4.1) and
data structures design (Section 4.2), our strategy is to first
build a coarse global distance tree at each processor (Sec-
tion 4.3). This step only needs a coarse-grained description
of global data distribution at each processor, and the memory
and communication cost is marginal. We use the global tree
to derive a balanced assignment of local trees among the
processors (Section 4.4). Each processor can use its local
tree to independently find the processors that it needs to
communicate with, and establish the communication schedule
without message exchanges (Section 4.5). Each processor then
independently constructs a full-grown local instance of the
underlying global tree (Section 4.6). A local instance is also
a distance tree that contains the information of local and
remote elements, which enables the processors to collectively
compute the vertex distances of their local distance trees with
the exploitation of data parallelism (Section 4.7). Our method
also takes advantage of temporal coherence in time-varying
simulation data so that only a small subset of the distance
tree can be updated (Section 4.8). The final distance field is
organized and stored in a distributed fashion that can facilitate
large data analytics. We have integrated our method with a
real-world simulation (Section 4.9), and explored performance
acceleration (Section 4.10).

4.1 Assumptions

Given a set I of elements in R?, we assume that the distance
field domain Q is rectangular and encloses I', as shown in
Figure 2 (a). (For clarity, we use 2D elements, domains and
quadtrees in the figures and examples.) The scalability of par-
allel distance field construction depends on both partitioning
and distribution of I" and Q.

Partition and distribution of I' is typically application
specific. Without loss of generality, we assume that T" is
partitioned in a representative block fashion [33]. Each block
is rectilinearly oriented and can contain multiple elements. The
bounding boxes of all blocks have the same size and shape.

The blocks can be assigned to the processors in different fash-
ions. For post-processing, the block assighment can suit the
needs of parallel distance field construction, and the amount of
elements at each processor can be roughly the same to achieve
balanced workload. For in-situ processing, the elements of I"
are generated during modelings or simulations. The partition
and distribution of I' is dictated by the applications that
generate data, which can be highly uneven among processors:
some processors may have multiple blocks of elements, while
some processors may have none.

Given the block-based data partition scheme, we assume
that the rectangular domain Q consists of a set of blocks,
{1,..,be} x{1,...,b,} x {1,...,b;}, where by, by, and b, are
the numbers of blocks along each axis. A block can be an
element block that contains the elements, or an empty block
without any elements. Each element block is assigned to a
processor. Figure 2 (b) shows an example that the set I" in Q
are divided and assigned to 5 processors.

4.2 Data Structures

The information of global data distribution is imperative for
distance field construction. However, it is infeasible to collect
precise distribution of elements at each processor for a large
data set. We address this issue by letting each processor gather
the coarse-grained information at a block level. To this end,
the first data structure that each processor has is a bitmap
which records the global distribution of element blocks and
empty blocks. The bitmap contains b, x by, x b, bits. Each bit
corresponds to a block in Q, and is set to 0 or 1 for an empty
block or an element block, respectively. Each processor first
initializes its bitmap by filling Os. Then, if a processor contains
the elements, the corresponding element blocks are marked
as 1 in the bitmap. Finally, each processor combines the
bitmaps from all processors. This can be easily implemented
using a collective reduction routine with the bitwise OR
operation, such as the MPI_ALLREDUCE function. The size
of the bitmap is marginal. For example, a bitmap of 128KB
can represent more than 1 million blocks which is sufficient
for current large-scale supercomputers. Each processor then
obtains an identical bitmap that records the global distribution
of the element blocks and the empty blocks in Q. Figure 2
(c) shows the bitmap of the global block distribution obtained
by each processor, given the partitioning and distribution of I"
among 5 processors in (b).

Each processor also has two arrays to store the information
of elements. The first array is an element array, elementarray,
which records the local elements. The element array is empty
if a processor does not have any local elements. The second
array is an element block array, elementblockarray, which
records the global element blocks. Each element block blk
contains its index blk.id in the bitmap and the processor ID
blk.proc to which the blk is assigned.

Finally, each processor has a local instance of the underlying
global distance tree. A local instance is also an octree with
the standard linear octree representation [34]. It consists of
two arrays, the vertex array and the node array. The vertex
array, vertexarray, records the octree vertices. Each vertex v
contains:
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e v.key: the locational key.

e v.node: the index of the node that creates v in the node
array.

e v.coord: the coordinate of v in Q.

o v.distance: the distance value at v.

The node array, nodearray, records the octree nodes. Each
node n contains:

o n.key: the locational key.

o n.boundingbox: the geometry of n’s bounding box.

o n.vertices: the indices of n’s vertices in the vertex array.

o n.elements: the indices of the elements that intersect n’s
triple in the element array.

o n.elementblocks: the indices of the element blocks that
intersect n’s triple in the element block array.

o n.processors: the IDs of the processors whose element
blocks intersect n’s triple.

o n.docation: the flag indicating if n is local or remote.

e n.parent, n.children: the indices of n’s parent and chil-
dren in the node array.

We note that the locational key [34], [35], also known as
the shuffled zyx key [36], is a commonly used linear octree
technique to encode and unambiguously distinguish octants?.
For an octant at the depth m, the locational key is a bit string,
ZIY1X122Y2X2 * - - ZmYmXm, indicating the path from the root to
this node. The convention is that if the bit x; is set to O, the
child at the depth i covers the left side in x of its parent;
otherwise, it covers the right side. The interpretation of the y
and z bits are similar. The key of each vertex is computed using
the same convention. We use a 4-byte integer for a locational
key, and the maximum tree level is 10.

4.3 Initial Coarse Global Distance Tree Construction

Each processor independently builds an initial coarse distance
tree to subdivide Q with respect to the information of the
element blocks provided by the bitmap. Each processor builds
the tree in a similar way as the one in Section 3.2. The
main differences are that the tree is built in the breadth-
first order and only the element blocks are considered. Each
processor starts with a root node, root, to cover Q. The
root.elementblocks contains all the element blocks, and the
root.processors contains the IDs of the processors that have
the element blocks. Then we recursively split the nodes in
the breadth-first order if a node’s triple intersects the element
blocks. For each new child, we check every element block
blk in the parent’s elementblocks list, and add blk into the
child’s elementblocks if blk intersects the child’s triple. We
also check every processor proc in the parent’s processors
list, and add proc into the child’s processors if proc’s element
blocks intersect the child’s triple. We continue this procedure
until the ratio of the leaf node number to the processor number
is greater than € (¢ =3 in our current implementation) or the
maximum tree depth has been reached. Because all processors
have an identical bitmap, they generate an identical initial
global distance tree after this step.

Y [ reo

PE1 [ PE2 PE3 [ PE4

abcdefghijklmnop

@ |Interioroctant
O O ® O @ Leafoctant with elements
X O Leaf octant without elements

(@) (b)

Fig. 3. (a) shows that the decomposed global distance
tree leaf octants (as indicated by the black square) are
assigned to the PEs whose element blocks intersect the
leaf octants bounding box. It is possible that one leaf
octant is assigned to multiple processors, such as the
leaf octant d. All the leaf octants are naturally ordered
based on their locational keys, so that the traversal of all
the leaf octants follows a Z-order space-filling curve that
preserves the spatial locality of the leaf octants. (b) shows
a quadtree corresponding to the spatial partition of (a).
The traversal of the leaf octants from left to right in (b) is
equivalent to the zigzag one in (a).

4.4 Leaf Octants Assignment

Each leaf octant in the initial global tree corresponds to a
region of Q (see Figure 3 (a)), and is associated with the
workload of computing the distance field. We assign the leaf
octants among processors. The leaf octants are not necessarily
continuous in nodearray. We scan nodearray and collect the
leaf octants into a temporary array leafarray while preserving
their orders in nodearray. The leaf octants are naturally
ordered according to their locational keys because of the
linear octree technique. This order is identical to the pre-order
traversal of the leaf octants as shown in Figure 3 (b). If we
traverse the leaf octants in this order in Q, we follow the well-
known Peano space-filling curve which can cluster the spatial
nearby octants together, as shown in Figure 3 (a). This property
facilitates partitioning and distribution of the workload among
processors using a two pass procedure.

In the first pass, we assign the leaf octants whose processors
lists are nonempty. Each of these leaf octants has the elements
within its region. We assign such an leaf octant to the
processors in its processors list to minimize data movement.
As show in Figure 3, some leaf octants may be assigned to
one processor, such as e, f and h that are assigned to PEjy,
and some leaf octant may be assigned to multiple processors,
such as d that is assigned to PEy and PE3.

In the second pass, we assign the leaf octants with the empty
processors lists. Each of these leaf octants has no elements
within its region, and we call it an empty leaf octant, such
as the octants i and k in Figure 3. There are two cases for
assigning the empty leaf octants:

In the first case, all processors have already been assigned

2. We use octant and octree node interchangeably.
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with workload in the first pass. For example, as shown in
Figure 3 (b), all five processors have been assigned with the
leaf octants. Then, we assign each empty leaf octant oct to
the processor that is responsible for the oct’s neighboring leaf
octants in leafarray and these neighboring leaf octants have
the closest ancestor with oct. For example, in Figure 3 (b),
the empty leaf octants i and k will be assigned to PE|, because
the octants i-/ are neighbors with the same ancestor, and j and
[ are assigned to PEj in the first pass. Similarly, the empty
leaf octants n and p will be assigned to PE,.

In the second case, some processors have not been assigned
workload in the first pass. This is a typical case for in-situ
processing, where the region-of-interest can be extracted or
identified on only a small fraction of processors. In this case
we adopt a simple rule that we evenly partition and distribute
the empty leaf octants according to their order in leafarray
among the rest of processors. This rule can generally provide
well balanced workload in practice because (1) we build the
initial distance tree that has a sufficient large number of octants
with respect to the processor number, and (2) the leaf octants
are ordered along the spacing-fill curve. For example, in Figure
3, assume there are another two processors, PE5 and PEg, who
do not have any elements and have not been assigned workload
in the first pass. Then we assign the octants i and k to PEs,
and n and p to PEg, and the spatial locality of the assignment
is ensured.

Each processor independently performs the same procedure
to compute the workload assignment. Thus, each processor
obtains an identical assignment of leaf octants of all pro-
cessors. Then a processor goes through each octant oct, sets
oct.location = local if oct is assigned to itself, and otherwise
sets oct.location = remote.

4.5 Communication Schedule

After the leaf octant assignment, each processor PE; takes
charge of a sub-region ®; of Q which is the union of its
assigned octants. In order to compute the vertex distance,
PE; will first compute the minimum distance from each local
vertex to the local elements in PE;’s elements list. However,
such a local minimum vertex distance is not necessarily the
global minimum. Each processor needs to further go through
the nearby but remote octants, and compute the minimum
distances from the local vertices to the elements in the remote
octants. To achieve this, PE; needs to send its local vertices to
its neighboring processors, outsource the distance computation
to those processors, gather the results and finally find the
minimum distance value.

A communication schedule plays an indispensable role that
helps each processor to identify the neighboring processors
that it will exchange the vertices with. Each processor PE;
builds a sent_table and a receive_table for the communication
schedule. Each entry of the tables contains the IDs of the
remote processors that PE; needs to exchange data with, and
the corresponding data buffer for sending or receiving. The
communication schedule is built based on the information
stored in the initial global distance tree:

For send_table, PE; scans its assigned leaf octants. For each
of them, leaf, the leaf.processors list contains the remote

pe1 [ PE2

pe3 [ Pe4

y [ pe0
T

Remote octant

Localoctant @

(@) (b)

Fig. 4. The light-blue shaded region in (a) is a set of local
leaf octants (4x4 square) assigned to PE4. (b) shows the
corresponding full-grown local distance tree at PE4.

processors whose element blocks intersect leaf’s triple. These
processor IDs are then added in send_table, because their
elements need to be considered and PE; needs to send local
vertices to them. If leaf.processors is empty, PE; checks each
of leaf’s ancestors along the path to the root until PE; finds
the first nonempty processors list, and adds the processor IDs
in send_table.

For receive_table, PE; simply returns an empty one if it
has no local element, as no neighboring processors will send
data to PE; in this case. Otherwise, PE; scans the global tree
and identifies the remote leaf octants or their closest ancestors
whose processors lists contain PE;’s ID. This means that PE;’s
element blocks intersect the triples of these remote leaf nodes,
and their host processors will send message to PE; to request
distance computation. In this case, these processor IDs are
added in receive_table.

4.6 Full-grown Local Distance Tree Construction

The initial global tree is constructed according to the informa-
tion of element blocks, and thus is coarse-grained. To compute
the distance field, each processor independently grows the
initial distance tree with respect to its local elements and the
global element blocks in two passes:

In the first pass, each processor PE; propagates its local
elements along the initial global tree, where each tree node’s
elements list records the elements that intersect its triple. After
this pass, the elements and elementblocks lists of each tree
node are filled with the elements and the element blocks
intersecting its triple, respectively.

In the second pass, each processor PE; grows its distance
tree in a similar way as the one in Section 3.2. For each one
of PE;’s local leaf octants, it is recursively split if there are
still elements or element blocks within its triple. During the
splitting, if the parent’s elements or element blocks intersect
the child’s triple, they will be added into the child’s elements
or elementblocks, respectively. For the other remote leaf
octants in the initial tree, they are recursively split in the
similar way but with only considering PE;’s elements. The
recursive procedure stops when the maximum tree depth is
reached or no more octant can be split.
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Figure 4 shows the full-grown local distance tree at PE4
from the example in Figure 3. We can see that, apart from
the refined local octants, some neighboring remote octants are
refined according to PE4’s elements as well. These refinement
will facilitate the following distance field computing.

4.7 Distance Field Computing

Having constructed the communication schedule and built full-
grown local distance tree at each processor, we continue to
compute the vertex distances in parallel.

First, each processor independently computes the distance
values from the local vertices to the local elements using the
method in Section 3.2 that is flexible with different distance
functions. Given a local vertex v, it can be shared by multiple
octree nodes. We assume that the node n contains the element
that has the local minimum distance min_dist to v. min_dist
is the global minimum if and only if it satisfies

min_dist <2 X n.radius 5

Otherwise it implies that there possibly exists an element elm
closer to v, and elm can be in the triple of n’s parent but not
the triple of n. Strain [22] showed that to find the minimum,
searching the element list of leaf node’s parent is sufficient
for the chessboard distance, and searching the element list of
leaf node’s grandparent is sufficient for the Euclidean distance.
Figure 5 shows the case when Equation 5 is violated and
searching the element list of the parent is required. In the
case of our parallel distance tree, this means that for the
chessboard distance, v needs to be sent to the processors in the
processors list of n’s parent; and for the Euclidean distance, v
needs to be sent to the processors in the processors list of n’s
grandparent. Thus, for each v whose local min_dist does not
satisfy Equation 5, its locational key is added into the entries
of its destination processors in send_table (Section 4.5). Given
our communication schedule, these vertex keys are exchanged
in a bundle. This significantly reduces the communication cost
when the number of exchanged vertices is large. In addition, a
locational key is much compact than a coordinates value and
can be used to further reduce the communication cost.

After exchanging the vertex keys, each processor translates
the received vertex keys into the coordinate values and com-
pute the minimum distance from every remote vertex to its
local elements. Once each processor completes calculation,
they exchange the results back to their neighboring processors
according to the communication schedule but in a reverse
direction. Finally, after receiving the remote vertex distances
from its neighboring processors, each processor updates the
min_dist values if the remote vertex distances are smaller. Up
to this point, all min_dist values are the global minimums. We
note that the vertex distances are stored in a distributed fashion
and the local distance fields of all processors collectively
cover the entire domain. We can use the vertex distances to
interpolate the distance at any point p via the distance tree
method in Section 3.2. On the other hand, our method to
compute vertex distances can be easily applied to compute
the exact distance at any point. Therefore, our parallel distance
tree can provide both exact and interpolated distance values at
users’ disposal according to their precision requirement.

Fig. 5. The blue shaded square corresponds to the
current node of interest, n, and its radius is r. The white
circle is the concentric triple of n. For simplicity, A is the
only element within n’s concentric triple and hence the
only entry in n.elementarray. We assume that the minimal
distance min_dist from vertex v to A within the ftriple is
between 2r and 3r. Thus, there is possibly an element B
which is outside the white circle but whose distance to v
is shorter than min_dist. In this case, it is necessary to
continue searching the elements of n’s parent to find B.

4.8 Tree and Distance Field Updating

Detailed modelings and simulations are typically characterized
by temporal coherence in their output time steps. This gives
us two important implications. First, only a marginal portion
of the tree structure needs to be updated with respect to the
field evolution between two consecutive time steps. Second,
we do not need to update the distance field of a region if there
are no field changes within the region’s triple.

Based on these implications, we can significantly reduce
the cost for updating the tree and the distance field compared
with the cost of initial tree construction and full distance field
computing. At a time step when distance field construction is
evoked, each processor first updates its local elements, fills
its local bitmap, and collectively reduces the global bitmap in
the same way as we described in Section 4.2. Each processor
also records the global bitmap of the previous time step. By
comparing the global bitmaps of the current and previous time
steps, each processor can detect the blocks that are changed.
For a block whose value is changed from 1 to 0 in the bitmap,
it means that this block contains no elements at the current
time step, and needs to be removed from the distance tree.
For a block whose value is changed from 0 to 1, it means that
this block contains the elements and needs to be added into
the tree.

For a processor that identifies its local changes, we also need
to update its element list. For a point or volumetric data set,
we can easily track the updated elements according to their
coordinates. For the polygonal data, however, we do not track
the updated elements, but simply replace the elements with
the newly identified polygons for maintaining the accuracy of
Euclidean distance computing.

If a processor detects that its lists of element blocks or
elements are changed, it then scans the distance tree, and
removes/adds the element blocks or the elements from/into the
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tree nodes. After modification, for a leaf node that contains
no element blocks or elements, it needs to be merged with
its siblings in a bottom-up fashion, until the new leaf node
satisfies the stopping criteria of tree splitting (Section 3.2).
For a leaf node that contains new element blocks or elements,
it needs to be further split, until the stopping criteria of tree
splitting are satisfied.

In practice, the amount of leaf nodes that need to be
adjusted is marginal compared with the overall tree size.
In our current design, we do not change the assignment of
spatial regions among the processors. This means that, for
each processor, the assigned regions remain the same, but the
distance tree with the regions might become coarser or finer.
After tree updating, only the processors having the elements
changed in its local and/or triple regions need to update their
communication schedules. The rest of steps of communication
schedules updating and distance field computing are the same
as what we described in Sections 4.5 and 4.7.

4.9

We integrate parallel distance field construction with a petas-
cale combustion simulation based on the APIs developed in
our previous work [31]. Through the APIs, the simulation
provides the size and coordinates of each processor’s global
domain and local partition. The simulation also provides the
pointer to the buffer of the local field data. The distance field
construction module is initialized and invoked by the solver
at a given rate. Our integration method can avoid interference
between the simulation and the distance field construction.

Integration with Simulation

410 Acceleration

The performance of our method can be further improved using
GPU or multithreading acceleration. The most intensive com-
putation in our method is to compute the distance values at the
tree vertices. For example, the Euclidean distance calculation
between the points and the polygons can be accounted for
nearly 90% of the computation cost of a processor. However,
we can easily parallelize the distance calculation using GPUs
or multithreading. This is first because the computation associ-
ated with each vertex is independent with each other. Secondly,
the linear representations of the distance tree and the elements
can facilitate concurrent data access. We use OpenMP in
our current implementation: each thread is assigned to be
responsible for a set of vertices, and the linear tree and the
element arrays are shared among the threads. This approach
has achieved noticeable speedup in practice.

5 RESULTS

We use four data sets with different data types in our experi-
mental study. The first two combustion data sets are volumetric
data generated from the turbulent combustion simulations per-
formed at the Sandia National Laboratories. The Car data set
is a geometric model used in a computational fluid dynamics
(CFD) simulation for car design. The Boeing 777 data set is
generated from a geometric CAD model constructed for the
Boeing Company.

8
[ Data Set | Data Type and Scale [ Mode |
Combustion volume (1.3B grid points) in-situ processing
Combustion volume (1.6B grid points) post-processing
Car polygonal (3.4M triangles) post-processing
Boeing 777 | polygonal (350M triangles) post-processing

TABLE 1
The data sets used in our evaluation.

The distance field domain, Q, of each data set is evenly
partitioned and distributed among the processors. The distance
values are stored at the vertices of the parallel distance tree. We
use the Euclidean distance that has more communication and
computation requirements compared with the other distance
functions. For the volumetric data, we first use the features
consisting of a set of voxels. The distance values to the
features such as an isosurface can be approximated as the
Euclidean distances between the points and the voxels covered
by the isosurface, which is commonly used in 2D and 3D
image processing [5], [6]. We also explicitly extract the
polygonal surfaces of the features using the parallel marching
cubes algorithm on-the-fly, and compute the exact Euclidean
distances between the points and the polygons, which meet the
precision requirement for a detailed simulation but increase
the computation cost for our evaluation study. Furthermore, to
test the interpolation performance, we generate a distance field
volume by regularly sampling the resulting parallel distance
tree. For the combustion data sets, each distance field volume
has the same resolution as the original volumetric data. For
the polygonal data set, we use a high resolution value for the
distance field volume to sufficiently capture the fine structures.
We test both in-situ processing and post-processing to verify
the parallelism of our approach. Table 1 lists the data sets, the
data types and scales, and the processing modes.

5.1 Application Results

The first combustion data set has a spatial resolution of
2025 x 1600 x 400 and each grid point contains 27 variables.
Figure 6 shows an example of distance-based visual analytics
for this data set, where two variables, temperature (7") and
hydroxyl radical (HO;), are used. Figure 6 (a) shows an
overview of the data. The main flame structure corresponds
to the T surface at a particular isovalue. We use the geometry
of the isosurface as the elements to construct the distance field.
After generating the distance field, a scientist can assign the
opacity values to the voxels at the given distance threshold, and
control the amount of information displayed around the surface
to better observe variable relationships and fine structural
information of small turbulent eddies, as shown in Figure 6 (b)
and (c). This distance-based visualization can clearly separate
previously hidden features that exist at the interior of larger
structures. Figure 6 (c) and (d) show the results of two
consecutive time steps, where we can perceive the smooth
evolution of structures as we construct in-situ distance field
construction at a high temporal frequency. This approach not
only allows scientists to see previously hidden features but
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Fig. 6. (a) shows the simultaneous rendering of two variables, temperature (T') and hydroxyl radical (HO,) of the
first combustion simulation data set. The T surface at an isovalue is white; the HO, variable is volume rendered.
We construct the distance field based on the isosurface. (b) and (c) show the scientists can interactively change the
distance threshold and control the amount of information of HO, displayed around the T surface to better observe
variable relationships. Following this natural coordinate system of a flame, the scientists can see the interaction of
small turbulent eddies with the preheat layer of a turbulent flame, a region that was previously obscured by the multi-
scale nature of turbulence. (c) and (d) show the results of two consecutive time steps, which convey the smooth

evolution of eddies via in-situ distance field construction.

(b)

Fig. 7. During a combustion simulation, the distance field
is constructed based on an isosurface of the T variable.
(a) and (b) show that the scientists can control the initial
placement and amount of particles with respect to the
different distance thresholds. The particles are colored
according to the values of HO;.

also enables more aggressive encoding of the data according
to the distance field, leading to greater storage saving [4].

Recently scientists have also instrumented their simulations
with particles to capture and better understand the turbulent
dynamics in combustion processes [37]. The initial placement

of each particle is desired to be close to the flame surface.
Through our integration method, we can construct the dis-
tance field with respect to the dynamic flame surface during
simulations, and allow scientists to fine tune the placement
and amount of particles with respect to the different distance
thresholds, as shown in Figure 7.

The second combustion data set has a spatial resolution
of 1408 x 1080 x 1100. In this case, we used the variables
of HO, and stoichiometric mixture fraction (mixfrac). The
main flame structure corresponds to the mixfrac surface for
which the isovalue is 0.2. Figure 8 shows the overview of
the original simulation data, the resulting distance field, and
the distance-based visualization. Our solution can generate a
high-resolution distance field of the data set. By interactively
changing the distance threshold, we can reveal the distribution
of HO, around the flame surface with great clarity. These
details are occluded by the larger exterior structures (Figure 8
(a)) and cannot be easily visualized using traditional transfer
functions, as shown in the comparison between Figure 8 (c)
and (d). Our visualization provides scientists a clear explo-
ration of the relationship between the combustion variables
and the flame surface for detailed chemical mechanism.

Apart from scientific simulation applications, our method
can also naturally support the traditional geometric models
used in engineering applications. The third data set is a
geometric model used in a numerical study on air flow
effects on a passenger car. We build a parallel distance tree
and generate a distance field with a spatial resolution of
512 x 512 x 512. The researchers have used the CFD approach
to obtain the aerodynamic data and complex flow structure
around the car. Although the researchers are equipped with
advanced visualization and analytic tools to capture important
flow features, distance fields provide the researchers another
dimension for investigation. For example, the researcher are
interested in the effects of different material types applied on
the front hood of the car to effectively control the distribution
of air-temperature. As shown in Figure 9, we can clearly see
the distribution of high temperature close to the car front
(engine), as well as the attenuation of temperature with respect
to the different distances from the car. This distance-based
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Fig. 8. (a) shows the simultaneous rendering of two variables of the second combustion simulation data set. The
mixfrac isosurface is white. The HO, variable is volume rendered, where higher values are indicated by orange or
red, and lower values by green or blue. (b) shows the volume rendering of the distance field, where the white mixfrac
surface is surrounded by a set of isosurfaces corresponding to the different distance values. (¢) shows a distance-
based rendering of the highlighted region in (a). With distance control, we can clearly see the distribution of HO;
around the surface of the flame, which was occluded by the larger exterior structures in (a). This result cannot be
easily obtained using traditional value-based transfer functions. (d) shows a rendering where we make the region of
lower HO, (the green and blue region in (a)) translucent to make the interior mix frac surface visible. However, the result
cannot clearly reveal the relationship between higher HO, and the surface. It has also lost the distribution information
of lower HO,. The highlighted regions in (c) and (d) provide the examples of comparison.

(®)

Fig. 9. Volume rendering of the temperature field at
different distances from the car (in particular, the car
engine).

visualization can facilitate the researchers’ investigation on
material types with various air flow conditions.

We also compute the exact Euclidean distance between
points and polygons for the Boeing 777 model. After building
the parallel distance tree, we generate a volume of distance
field with a resolution of 2048 x 1942 x 624. The constructed

distance field features smooth isocontours and preserves fine
details of individual components. We can apply different oper-
ations using the distance field, for example, the morphological
operation of dilation shown in Figure 10. Note that the left
images in the second and third rows of Figure 10 are generated
using the distance field rather than the original model. Because
the distance tree is refined adaptively around the vicinity of
objects, our method can effectively capture fine structural
details in such a large geometric model, which can be poten-
tially useful in distance-related applications, such as collision
detection in maintenance and assembly task simulations [38].

5.2 Performance Evaluation

We tested our parallel distance field method on two supercom-
puters. The first one is Hopper, a Cray XE6 supercomputer
at the Lawrence Berkeley National Laboratory. The system
contains 6384 nodes interconnected by the Cray Gemini
Network. Each node has two 2.1 GHz twelve-core CPU with
32 GB of RAM. The second one is Intrepid, an IBM Blue
Gene/P supercomputer at the Argonne National Laboratory.
The system contains 40960 nodes interconnected by the In-
finiBand Ethernet. Each node has one 850 MHz quad-core
CPU with 2 GB of RAM. For clarity, we only present the
performance results using the two combustion data sets and
the Boeing 777 data set in Table 1. Table 2 lists the major
time components contributing to the overall cost.

In the first test, we conduct in-situ distance field construc-
tion using the first combustion data set with the following three
configurations:

o Config. 1: computing the Euclidean distances between
points and isosuface polygons without OpenMP.

o Config. 2: computing the Euclidean distances between
points and isosuface polygons with OpenMP.
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Fig. 10. Isosurface rendering of the distance field gener-
ated from the Boeing 777 model. The top image shows
the overviews of the distance field. The second and third
rows provide the close-up views of two highlighted com-
ponents of the model, where we use isosurface rendering
to depict the distance field, and the isovalues increase
from left to right to mimic the effect of dilation. Our method
can capture the fine structural details, for example, a long
and very thin wire across the engine.

o Config. 3: computing the Euclidean distances between
points and isosuface voxels without OpenMP.

We use the T isosurface in Figure 6 to construct the distance
fields. Table 3 shows the detailed performance results on
Hopper 3. In Configuration 1 (the top green section of Table 3),
we achieve the ideal speedup for the distance tree initialization
(T _dist_i) with a parallel efficiency of 103.9% from 4320 to
34560 CPU cores. However, we also note that the parallel
efficiency is about 67.6% from 8640 to 34560 CPU cores.
This is because the initial global tree construction (7T_g_tree)
is not scalable in our current design, which becomes the
performance bottleneck with a large number of processors.
However, we note that this is one-time initialization and the
cost can be amortized for a large number of time steps.
Without considering T_g_tree, for T_dist_i', the parallel effi-
ciency is 82.2% from 8640 to 34560 CPU cores, and 128.1%
from 4320 to 34560 CPU cores. On the other hand, as we
pointed out in Section 4.8, the cost to update the tree can
be significantly lower than the initial tree construction cost.
We can clearly see that T_u_tree is much smaller than the

3. Not all data points of the time components have been obtained
in our tests due to the limit of our supercomputer time allocation.

11

Time Operation
T _sim Simulation
T_g_tree | Build initial global distance tree
T_l_tree Build full-grown local distance tree
T_1_dist Compute local vertex distances
T_c_dist Compute remote vertex distances
T_exg Exchange vertices and vertex distances
T _vol Construct sampled distance volume
T_u_tree | Update local distance tree
T_u_exg Exchange vertices and vertex distances for updating
T_u_dist Update local and remote vertex distances
T _dist_i Initialize: T_g_tree+T_I_tree+T _I_dist +T_c_dist + T _exg+ T _vol
T _dist_i’ Initialize: T_I_tree+T_I_dist +T_c_dist +T_exg+ T _vol
T_dist_u | Update: T_u_tree+T _u_exg+T_u_dist

TABLE 2

Major execution time components and their
corresponding operations.

[PEs [ 4320 | 8640 | 17280 | 34560 | 69120 |
[T_sim ] 123.64 62.72 27.21 ] 14.62 2439
Config.1: Euclidean distances between points and polygons (w/o OpenMP)

T_dist_i |60.62(100%) 19.73(153.5%) | 10.30(147.1%) | 7.29(103.9%)
T_dist_i' | 60.46(100%) 19.39(156.0%) | 9.28(163.0%) | 5.90(128.1%)
T_g_tree 0.16 0.36 1.03 1.39
T_i_tree 1.76 0.96 0.73 0.38
T_I_dist 11.27 4.04 1.93 1.13
T_c_dist 47.42 14.37 6.61 4.38
T_exg 0.01 0.01 0.01 0.01
T_dist_u | 58.83(100%) 18.47(159.2%) | 8.59(171.3%) | 5.54(132.7%)
T_u_tree 0.13 0.06 0.04 0.02
T_u_exg 0.01 0.01 0.01 0.01
T_u_dist 58.69 18.40 8.54 5.51
Config.2: Euclidean distances between points and polygons (with OpenMP)
T_dist_i |20.12(100%) 7.25(138.7%) | 4.41(114.2%) | 3.53(71.3%)
T_dist_i' | 19.96(100%) 6.89(144.8%) | 3.38(147.7%) | 2.14(116.8%)
T_g_tree 0.16 0.36 1.03 1.39
T_I_tree 1.76 0.96 0.73 0.38
T_I_dist 4.16 1.33 0.56 0.37
T_c_dist 14.03 4.59 2.08 1.37
T_exg 0.01 0.01 0.01 0.01
T_dist_u | 18.33(100%) 5.99(153.0%) | 2.69(170.4%) | 1.78(128.9%)
T_u_tree 0.13 0.06 0.04 0.02
T_u_exg 0.01 0.01 0.01 0.01
T_u_dist 18.19 5.91 2.64 1.74
Config.3: Euclidean distances between points and voxels (w/o OpenMP)
T_dist_i | 0.67(100%) 0.79(42.5%) | 0.69(24.2%) 1.30(6.4%) 1.45(2.9%)
T_dist_i' | 0.59(100%)  0.43(68.5%) | 0.35(42.7%)| 0.11(68.6%) | 0.09(43.6%)
T_g_tree 0.08 0.35 0.34 1.19 1.37
T_I_tree 0.12 0.11 0.08 0.03 0.03
T_I_dist 0.14 0.08 0.07 0.02 0.01
T_c_dist 0.33 0.24 0.19 0.05 0.03
T_exg 0.01 0.01 0.01 0.01 0.01
T_dist_u | 0.076(100%) 0.030(126.7%) | 0.031(61.7%) | 0.022(43.8%) | 0.018(26.4%)
T_u_tree 0.065 0.020 0.018 0.010 0.008
T_u_exg 0.006 0.007 0.011 0.011 0.009
T_u_dist 0.005 0.003 0.002 0.001 0.001
TABLE 3

Timing breakdown for in-situ distance field construction
with the combustion simulation on Hopper. The time is
measured in seconds per time step. The percentage
numbers represent the parallel efficiency where the
times measured with 4320 CPU cores are used as the
references.

sum of T_g_tree and T_I_tree. Furthermore, we compute the
Euclidean distances based on polygons in this configuration.
As discussed in Section 4.8, we do not reuse the results from
the previous time step for a precision purpose, and thus there
are no savings for updating the distance field (7 _u_dist). The
overall parallel efficiency of tree and distance field updating
(T _dist_u) is 132.7% from 4320 to 34560 CPU cores.

In Configuration 2 (the middle orange section of Table 3),
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Actual measurement —&— Ideal speed up ‘ PEs ‘ 1024 ‘ 2048 ‘ 4096 ‘ 8192 ‘
T _dist_i 4083.79(100%) | 2327.11(87.74%) | 1259.33(81.07%) | 678.26(75.26%)
140 N 400 T_dist_i’ | 4083.74(100%) | 2327.02(87.75%) | 1259.06(81.09%) | 677.78(75.31%)
120 \ L T_g tree 0.05 0.09 0.27 0.48
100 \ 300 T_I_tree 426.93 293.62 168.08 101.84
80 \ T_I_dist 2812.12 1548.52 803.37 405.44
60 N 200 \ T_c_dist 836.55 477.48 281.10 165.72
40 - 100 T_exg 8.14 7.39 6.51 478
20 \\‘ \\\‘
° > ® o P & ° > P P D TABLE 4
§ & P& R S R ) Timing breakdown for computing the distance field of the
. Boeing 777 model on Hopper. The time is measured in
T I tree T_1_dist
s e seconds. The percentage numbers represent the parallel
25 1\ 1\ efficiency where the times measured with 1024 CPU
2 \\ 2 N cores are used as the references.
1.5 0.8
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0.4
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0 \\ 0.: D —
& & & P8 & & N & 86.9% average par.allell efficiency from 1024 to 32768 CPU
vy Mo cores, without considering 7_g_tree. We can see that the most
T c_dist T_exg expensive operations, the local tree construction and the local
16 T |tree mT_|_dist = T_c_dist = T_exg = T_vol vertex distances computing, are still close to the ideal speedup.
12N 600 Compared with the first test, an interesting observation is that
9 f;gg the computation times are significantly higher in the second
6 \ 300 test. This might be because Intrepid has a slower CPU speed
4 S 200 . -
2 . |00 compared with Hopper. Nevertheless, our method achieves
N © > 0 desired performance on both architectures.
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RO S SN e S S S S R ¢ Table 4 shows the detailed performance of distance field
. construction around the Boeing 777 model on Hopper. The
T _vol Accumulated time

Fig. 11. Scalability study using the second combustion
data set for post-processing on Intrepid. In each plot, the
horizontal axis represents the number of processors, and
the vertical axis represents the running time in seconds.

we use OpenMP with four threads per MPI process to accel-
erate distance computation. The average speedups of T_[_dist
and T_c_dist from OpenMP are about 305% and 322%,
respectively, compared with the times in Configuration 1.
Averagely, T_dist_i is 17% of T_sim, which is reduced from
42% in Configuration 1. T_dist_u is around 11% of T_sim,
showing that we can compute the exact Euclidean distances
at a low cost during a simulation run.

In Configuration 3 (the bottom pink section of Table 3), we
compute the Euclidean distances based on isosurface voxels.
The corresponding computation cost is much lower than the
one based on polygons. The sum of T_I_dist and T_c_dist is
averagely 1% of its counterpart in Configuration 1. Because
of the lower computation cost, the overhead of T_g_tree
clearly dominates T_dist_i with a large number of processors.
However, in this configuration we can easily track the updated
voxels overtime, and only update the portion of distance fields
related to these voxels. Therefore, we can significantly lower
both T_u_tree and T _u_dist. As shown in Table 3, we can
see that T_dist_u is only about 1.2% of T_dist_i with 69120
CPU cores, and is negligible to the simulation time 7_sim.

Figure 11 shows the detailed performance results using
the second combustion data to construct a distance field on
Intrepid. Figure 8 (a) and (b) show the overview of the original
data and the resulting distance field. Our method achieves

overall parallel efficiency is 75.26% from 1024 to 8192 CPU
cores. To the best of our knowledge, we present for the first
time the scalable distance field construction of a geometric
data at this large scale.

5.3 Discussion

The performance study shows several advantages of our
method. First, we can clearly see that the overall parallel
distance field construction scales very well with the increasing
number of processors. The effectiveness of our distance tree
is clearly illustrated in the two rather challenging combustion
cases where the set I' of elements is only distributed among
a small set of the processors. Moreover, although 7_g_tree
increases with the number of processors, it is only a one-time
cost. The subsequent cost for updating tree is much smaller by
leveraging the temporal coherence of simulation data. Such a
low cost makes it feasible to compute distance field during the
simulation run, and thus significantly reduce time to solution
by avoiding expensive data movement.

Second, our method has a low communication cost even
with a large number of processors. This is first because
our communication schedule is constructed by leveraging the
spatial coherence of simulation data, and each processor only
needs to exchange data with a small set of neighboring pro-
cessors that are identified efficiently with our parallel distance
tree. In addition, we only send the vertex key that is a 4-byte
integer, rather than three floating point coordinates. Thus, our
method only incurs a small communication footprint relative
to the size of the entire distance field volume. For example,
in the second test, the exchanged data is under 0.01% of the
total data on 32768 CPU cores.
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Third, the experimental results show that our method does
not depend on any particular architectures. The linear data
representation can facilitate the acceleration of distance com-
putation using different techniques, such as GPU and OpenMP.
Furthermore, our examples highlight the flexibility of our
method with respect to different data types and applications
in real-world. Given our novel design of parallel distance tree,
we obtain clear improvement over the previous state-of-the-art,
and believe that the design principle is applicable to a wider
class of scientific and engineering applications.

However, a native octree may not provide effective I/O once
we store a large tree on persist storage. This is because an
octree is characterized as a narrow/deep tree such that visiting
a leaf node may require a long traversal path from the root
and incur intensive I/O operations. In the future, we will study
approaches to store out-of-core octree for large distance fields.
In addition, we have not implemented a direct visualization
of parallel distance tree yet. Thus, although exact distance
values at any point can be computed from a tree, we have
to interpolate the tree to generate a volume of distance field
for visualization. We plan to leverage our parallel octree-based
volume rendering method [39] to enhance visualization.

6 CONCLUSION

We present a highly scalable parallel distance field con-
struction algorithm that is critical for data analysis and vi-
sualization of large-scale applications. Our method employs
inexpensive load balancing at the global tree construction stage
and efficiently parcels out workloads among the processors
to minimize the communication traffic. It features a highly
scalable scheme of data partition and representation compat-
ible to large systems. It also has been directly integrated
with simulation codes to minimize the data transformation
overhead. Moreover, it allows clear and interactive observation
of fine details in large scale data. We believe that our algorithm
sets a record with regard to highly scalable performance of
real-world large data on distributed architectures for distance
field construction.

Researchers have exploited massive GPUs to accelerate
simulations [40]. However, the disparity between I/O speed
and compute speed is further aggravated, and communication
and load balancing remain the fundamental challenges for
scalability. Our ultimate goal is a fast, scalable distance tree
that can handle large scale data with different underlying
representations using hundreds of thousands of CPU cores
or GPU accelerators. Our approach provides a foundation for
big data management and is key to bridge the gap between
simulations and data analytics in the exascale computing era.
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